The Mechanism of Acyl-Specific Phospholipid Remodeling by Tafazzin

Michael Schlame
Phospholipid

- Head group
- sn-1 Fatty acid
- sn-2 Fatty acid

Tafazzin

Chemical reactions and structures are shown involving phospholipids, fatty acids, and a protein called Tafazzin.
Tafazzin Reacts with < 1% of Mitochondrial Lipids

<table>
<thead>
<tr>
<th>Mitochondria</th>
<th>dTAZ pmol/mg</th>
<th>PL nmol/mg</th>
<th>PL/dTAZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fly WT</td>
<td>1.1±0.1</td>
<td>0.82±0.23</td>
<td>745</td>
</tr>
<tr>
<td>Sf9 expressing dTAZ</td>
<td>20±3</td>
<td>1.69±0.31</td>
<td>85</td>
</tr>
<tr>
<td>Sf9 expressing dTAZ (high level)</td>
<td>86±2</td>
<td>4.38±1.02</td>
<td>51</td>
</tr>
</tbody>
</table>

![Graph showing dTAZ (ng) vs. signal intensity](image1)

![Graph showing dTAZ (ng) vs. signal intensity](image2)
Tafazzin Reacts with < 1% of Mitochondrial Lipids

<table>
<thead>
<tr>
<th>Mitochondria</th>
<th>dTAZ pmol/mg</th>
<th>PL nmol/mg</th>
<th>PL/dTAZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fly WT</td>
<td>1.1±0.1</td>
<td>0.82±0.23</td>
<td>745</td>
</tr>
<tr>
<td>Sf9 expressing dTAZ</td>
<td>20±3</td>
<td>1.69±0.31</td>
<td>85</td>
</tr>
<tr>
<td>Sf9 expressing dTAZ (high level)</td>
<td>86±2</td>
<td>4.38±1.02</td>
<td>51</td>
</tr>
</tbody>
</table>

![Graph showing changes in 14C-LPC and 14C-PC over time](image)

- Incubation time (min) vs. 14C-LPC and 14C-PC levels.
Tafazzin + PC/LPC Liposomes
Tafazzin + PC/LPC Liposomes

![Diagram](image)

<table>
<thead>
<tr>
<th>1-palmitoyl-2-linoleoyl-PC</th>
<th>1-palmitoyl-2-lyso-PC</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 nmol</td>
<td>1 nmol</td>
<td>20:1</td>
</tr>
<tr>
<td>1,000 cpm</td>
<td>45,000 cpm</td>
<td>1:45</td>
</tr>
</tbody>
</table>
Tafazzin + PC/LPC Liposomes

<table>
<thead>
<tr>
<th>1-palmitoyl-2-linoleoyl-PC</th>
<th>1-[¹⁴C]palmitoyl-2-lyso-PC</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 nmol</td>
<td>1 nmol</td>
<td>20:1</td>
</tr>
<tr>
<td>1,000 cpm</td>
<td>45,000 cpm</td>
<td>1:45</td>
</tr>
</tbody>
</table>

Supernatant: 82% [¹⁴C]PC
Liposomes: 100% PC
Tafazzin + PC/LPC Liposomes

![Graph showing the relationship between 14:0-LPC (nmol) and 18:2-18:2-PC (nmol).]
Tafazzin + PC/LPC Liposomes

31P NMR
Tafazzin Reacts only with Non-Bilayer Lipids

Phosphatidylethanolamine
Cardiolipin
Tafazzin Reacts only with Non-Bilayer Lipids

PC/LPC

PE/LPC

CL/LPC

Tafazzin activity
PC/LPC Micelles: Transacylation Activity Increases with the Number of Double Bonds and Decreases with the Chain Length
Tafazzin Transfers 14:0 Acyl Groups but does Not Achieve Complete 14:0 Exchange between PC & LPC

\[
14:0\text{-LPC} + 14:0\text{d-14:0d-PC} \rightarrow 14:0\text{-14:0d-PC} + 14:0\text{d-LPC}
\]
Conclusions I

- Tafazzin does not react with lipids in the bilayer state.

- Instead, it requires substrates to form assemblies with high positive or negative curvature, such as micelles or inverted hexagonal structures.

- Low lipid packing order promotes transacylation, presumably because it facilitates ideal mixing of PLs and LPLs.
Lysophospholipids

Phospholipids

Transacylations

10^2 Lysophospholipids

10^3 Phospholipids

10^5 Transacylations
Transition into H_{II} Phase Induces Acyl Specificity

18:1-CL

18:2-CL

18:1-CL+18:2-CL
Reconstitution of Mitochondrial Phospholipid Remodeling In Vitro

\[\text{CL} : \text{MLCL} : \text{LPC} : \text{PC} \]
\[40 : 10 : 10 : 40 \]
Reconstitution of Mitochondrial Phospholipid Remodeling In Vitro

Diagram showing the reaction:

$\text{18:1-CL} \rightarrow \text{18:1} \rightarrow \text{18:1-LPC}$
$\downarrow \text{18:1} \downarrow \rightarrow \text{18:2-MLCL}$

Diagram showing the transacylation product (nmol):

- CL : MLCL : LPC : PC
- 40 : 10 : 10 : 40

Bar graph showing the transacylation product (nmol) with and without Ca$^{2+}$

- -Ca$^{2+}$
- +Ca$^{2+}$
Reconstitution of Mitochondrial Phospholipid Remodeling
In Vitro

31P NMR

31P Chemical shift (ppm)

+ Ca$^{2+}$

L_{a}

H_{n}
Reconstitution of Mitochondrial Phospholipid Remodeling In Vitro

\[
\begin{align*}
18:1-CL & \rightarrow 18:1-LPC \\
18:2-MLCL & \rightarrow 18:2-PC \\
\end{align*}
\]

\[
\begin{align*}
\text{Transacylation product (nmol):} & \\
\text{CL : MLCL : LPC : PC} & = 40 : 10 : 10 : 40 \\
\end{align*}
\]

\[
\begin{align*}
\text{CL : (18:2)_n-CL} & \\
\text{(18:1)_n-CL} & \\
\text{18:1-18:2-PC} & \\
\end{align*}
\]

- Ca\(^{2+}\)
+ Ca\(^{2+}\)
Conclusions II

• The acyl specificity of tafazzin depends on the lipid phase state.

• Native molecular species of cardiolipin can be created in vitro if tafazzin reacts with mitochondrial lipids in the hexagonal state.
Acknowledgements

Yang Xu
Devrim Acehan
Salvatore Valvo
Mindong Ren
David Stokes

NYU School of Medicine

Richard Epand
Bob Berno

McMaster University

31P NMR