The preferred acyl chain donor of the yeast tafazzin

Toon de Kroon

Membrane Biochemistry & Biophysics Department of Chemistry Utrecht University

Institute & Graduate School of Biomembranes

Faculty of Science

Department of Chemistry

Universiteit Utrecht

Regulation of membrane lipid homeostasis

The interplay between phospholipid class and acyl chain composition determines physical properties of the membrane

- Membrane fluidity: **UFA/SFA**
- Membrane thickness: acyl chain length
- Membrane surface charge: % PL⁻
- Membrane intrinsic curvature: bilayer vs. non-bilayer lipids

Why do we study regulation of membrane lipid homeostasis in *S. cerevisiae*?

- Phospholipid biosynthetic pathways and membrane lipid composition similar between yeast and higher eukaryotes
- Ease of manipulation
- Limited repertoire of acyl chains
- Tolerance to variation in lipid composition

Phospholipid and acyl chain composition of wild type yeast

phospholipid class	mol%		\sim
phosphatidylcholine (PC) phosphatidylethanolamine (PE) phosphatidylinositol (PI) phosphatidylserine (PS)	41 26 18 9	fatty acid	mol%
cardiolipin (CL)	5	C14 C16:0	2 15
		C16:1 C18:0 C18:1	48 4 30

BY4742 cultured on semi-synthetic lactate medium to mid-log phase

Acyl chain exchange/remodeling contributes to the molecular species profile of PC in yeast

Boumann et al., 2003

PC remodeling is monitored in a pct1∆ strain in pulsechase experiments with stable isotope labeling and detection by ESI-MS/MS

"dynamic lipidomics"

Remodeling by acyl chain exchange contributes to the PC species profile in a *pct1*∆ strain

PC molecular species

Cells were pulsed for 10 min with (*methyl*-D₃)-methionine, the label was chased with (*methyl*-H₃)-methionine, detection by parent ion scan for m/z 193

Deletion of the SCT1/GAT2 gene reduces the extent of remodeling of PC in pct1^Δ cells

Cells were pulsed for 10 min with (*methyl*- D_3)-methionine, the label was chased with (*methyl*- H_3)-methionine

SCT1 (GAT2)

 Encodes a G-3-P/DHAP acyltransferase responsible for attaching an acyl chain at the *sn*-1 position to yield lyso-PA

glycerol-3-phosphate + acylCoA $\underset{\text{Gpt2p}}{\overset{\text{Sct1p}}{\longrightarrow}}$ lyso-PA $\underset{\text{Ale1p}}{\overset{\text{Slc1p}}{\longrightarrow}}$ PA $\underset{\text{phospholipids}}{\overset{\text{triacylglycerol}}{\longrightarrow}}$

Zheng and Zou, 2001

C16:0 content is decreased by deleting SCT1

and 4-fold increased upon overexpression of Sct1p

Sct1p regulates acyl chain desaturation by competing for C16:0 CoA with the desaturase Ole1p

- Deletion decreases C16:0 by 50%
- Overexpression strongly increases fatty acid saturation

Overexpression of Sct1p: increased saturation in molecular species profiles of the major phospholipids:

Total lipid extracts analyzed by ESI-MS/MS (n=2)

Effect of overexpressing Sct1p on molecular species profile of CL

SCT1 overexpression enhances the extent of PC remodeling, and is a new tool in screening for genes involved

pct1 **pYES2-SCT1** *cells* were pulsed for 10 min with (*methyl-D*₃)-methionine, the label was chased with (*methyl-H*₃)-methionine

Deletion of **TAZ1** does not affect remodeling of PC in the SCT1overexpression background

Deletion of TAZ1 increases the level of unsaturation of PS and PE in the SCT1-overexpression background

PS in yeast aminophospholipid metabolism

Pulse labeling for 20 min with ²H₃-serine reveals newly synthesized PS and PE

Species selectivity of decarboxylation by PS decarboxylase: 32:2 > 34:2 > 32:1 > 34:1

cells were pulsed for 20 min with D_3 -serine before lipid extraction

Translocation of PS to mitochondria diminishes with increasing molecular hydrophobicity

taken from Heikinheimo & Somerharju (2002) Traffic 3: 367

Overexpression of SCT1:

Deletion of *TAZ1* reduces the *relative* content of saturated acyl chains in newly synthesized D_3 -PS and to a lesser extent in D_3 -PE

cells were pulsed for 20 min with D_3 -serine before lipid extraction

In the absence of Taz1p, the relative amount of ³²P-PS is doubled after a 15 min pulse with ³²P_i^{*}

01	³² P in phospholipid (% of total)							
Strain	CL	ΡΑ	PE	PS	PI	PC	-	
wt	1.38	15.90	5.47	12.36	52.03	5.59	log nhasa	
taz1	2.19	8.71	5.79	23.14	50.20	6.62	iog priase	
wt	1.38	16.86	3.25	10.01	57.45	6.85	early stationary	
taz1	2.65	15.03	2.84	20.04	49.75	7.32		

W303-1A (wt) and isogenic BTY1 ($taz1\Delta$) were cultured on YPGE

*taken from Gu et al. (2003) Mol. Microbiol. 51: 149

In the absence of Taz1p the maturation of the PS molecular species profile is delayed in *SCT1*-overexpressing cells

Comparison of species profiles of *steady state* PS to *pre-existing* ¹H-PS pool in ²H-serine labeling

Conclusions and implications

 Overexpression of SCT1 diversifies the molecular species profile by increasing the content of C16:0, making it a useful tool in dynamic lipidomics studies in yeast

 The decarboxylation of PS to PE decreases with increasing hydrophobicity of the PS substrate in yeast (as in BHK cells)

 The effects of deleting TAZ1 on the species profiles of (newly synthesized) PS indicate that Taz1p consumes PS; other acyl chain donors are not excluded

The localization of Taz1p in the MOM allows it to compete with Psd1p for incoming PS

> Using incoming PS as preferred acyl donor would increase the efficiency of Taz1p (no acyl chain specificity!) in enriching CL with unsaturated acyl chains

Acknowledgments

Cedric De Smet Tom Ewing Ruud Cox Tine Michels

Jos Brouwers

(Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht)

Femke Stet Fred Vaz (University of Amsterdam)

Netherlands Organisation for Scientific Research