# The Linking of Cardiolipin Remodeling to Mitochondrial β-oxidation and Cardiolipin to T-cell function

# Grant M. Hatch

Department of Pharmacology & Therapeutics Manitoba Institute of Child Health (MICH) Faculty of Medicine, University of Manitoba Winnipeg, Manitoba, Canada



















# Synopsis

- Brief Introduction to cardiolipin
- Role of Stomatin-like protein 2 in altering cardiolipin and mitochondrial function in T-cells
- Role of  $\alpha$  subunit of Human Trifunctional Protein in cardiolipin remodeling





- 1. Major mitochondrial membrane phospholipid
  - comprises 7-16% of the entire phospholipid mass of the cell depending upon the tissue
  - 21% of phospholipid mass of the inner mitochondrial membrane
  - synthesized on mitochondrial inner membrane





1. Major mitochondrial membrane phospholipid

2. Required for activation of enzymes of electron transport chain/respiratory supercomplex assembly

- both content and fatty acid composition are important

- e.g. delipidated cytochrome oxidase is reconstituted by addition of cardiolipin

- cardiolipin is the "glue" that holds the respiratory chain supercomplexes together



- 1. Major mitochondrial membrane phospholipid
- 2. Required for activation of enzymes of electron transport chain

#### 3. Role in protein and lipid import into mitochondria

- CDP-DG, phosphatidylserine, malate dehydrogenase, ornithine carbamyltransferase precursor proteins



1. Major mitochondrial membrane phospholipid

2. Required for activation of enzymes of electron transport chain

3. Role in protein and lipid import into mitochondria

#### 4. Regulator of apoptosis

- required for caspase-8 activation
- CL/MLCL binds to Bid/t-Bid, regulated by PLS3
- > cytochrome c release from mitochondria

#### Mammalian Cardiolipin *de novo* Biosynthesis: "The CDP-DG Pathway"



## Human and Mammalian Cardiac Cardiolipin is Highly Enriched with 18:2 (Tetralinoleoyl-CL or L<sub>4</sub>-CL)



# **Major Cardiolipin Species**

| <i>sn</i> -1- <i>sn</i> -2 | s <i>n</i> -2-s <i>n</i> -1   | %            |
|----------------------------|-------------------------------|--------------|
| 18:2-18:2                  | 18:2-18:2                     | 80           |
| 18:2-18:1                  | 18:2-18:2                     | 12           |
| 18:1-18:2                  | <b>18:2-18:2</b> <sup>]</sup> | ≻ I <b>∠</b> |



Adapted from: Schlame et al. 2005 Chem. Phys. Lipids 138, 38-49

#### **Cardiolipin Remodeling Pathways**



Adapted from: Hauff and Hatch (2006) Prog. Lipid Res. 45, 91-101.

# Synopsis

Brief Introduction to cardiolipin

Role of Stomatin-like protein 2 in altering cardiolipin and mitochondrial function in T-cells

Role of α subunit of Human Trifunctional Protein in cardiolipin remodeling

# Stomatin-like protein 2 (SLP-2)

- stomatin prohibitin flotillin HflC/K (SPFH) superfamily
- highly conserved family of proteins that mediate interactions with cell membranes
- upregulated in many cancers
- modulates MMP and ATP production

#### SLP-2 is Upregulated Upon Peripheral Blood Mononuclear Cell Activation



#### SLP-2 Localizes to the Immunological Synapse Upon Jurkat T-Cell Activation



SLP-2 polarizes to the immunological synapse during T cell activation (*Christie et al 2012 PloS One*)

SLP-2 expression increases effector responses whereas down-regulation of SLP-2 correlates with loss of TCR signaling and activation (*Kirchhof et al. 2008 J. Immunol.*)

#### SLP-2 is Localized Primarily to Mitochondria in Jurkat T-Cells







#### Expression of SLP-2 in T-cells Increases Number of Metabolically Active Mitochondria





#### SLP-2 Expression in T-Cells Stimulates Cardiolipin and Mitochondrial Biogenesis



#### **SLP-2** Binds to Cardiolipin





#### **SLP-2 Interacts with Prohibitins**



#### SLP-2 Expression in T-Cells Stimulates Mitochondrial Activity and Interleukin-2 Secretion in Response to T-Cell Stimulation



#### T-Cell Specific SLP-2 Knock Out Mice Exhibit Near Normal T-cell Number





#### T-Cells Deficient in SLP-2 Exhibit Reduced Mitochondrial Complex Protein/Activities, insoluble Prohibitin-1 and Cardiolipin



# T-Cell Specific SLP-2 Knock Out Reduces *in vivo* Interleukin-2 Secretion in Response to T-Cell Stimulation and Delays Cardiac Allograft rejection



Summary I:

SLP-2 expression in T-cells stimulates cardiolipin and mitochondria biogenesis/activity and T-cell ability to respond to stimuli

Christie et al., Mol. Cell. Biol. 2011, 31:3845-3856.

SLP-2 KO in T-cells reduces cardiolipin in PHB complex fractions, mitochondrial metabolism and T-cell ability to respond to stimuli linking cardiolipin to T-cell function

Christie et al., J. Immunol. 2012 (in revision)

SLP-2 functions to recruit prohibitins to cardiolipin-enriched microdomains in which ETC complexes are optimally assembled



June 2012 Vol 32, Issue 11

# Synopsis

- Brief Introduction to cardiolipin
- Role of Stomatin-like protein 2 in altering cardiolipin and mitochondrial function in T-cells
- Role of  $\alpha$  subunit of Human Trifunctional Protein in cardiolipin remodeling

# Expression of human MLCL AT-1 in Barth Syndrome lymphoblasts (patient ΔTAZ1) increases cardiolipin and mitochondrial Complex II + III activity



Taylor and Hatch (2009) J. Biol. Chem. 284, 30360-71

## Human MLCL AT-1 is a shortened version (59 kDa) of the α subunit of Human Trifunctional Protein (74 kDa)

| - TRANSIT PEPTIDE REGION - <br>NP_000173 1 MVACRAIGILSRFSAFRILRSRGYICRNFTGSSALLTRTHINYGVKGDVAVVRINSPNSKVNTLSKELHSEFSEVMNEIW<br>PreMtMLCL AT                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NP_000173 81 ASDQIRSAVLISSKPGCFIAGADINMLAACKTLQE-VTQLSQEAQRIVEKLEKSTKPIVAAINGSCLGGGLEVAISCQY<br>PreMtMLCL AT                                                                                                                                                                                        |
| - TRANSIT PEPTIDE REGION - <br>NP_000173 159 RIATKDRKTVLGTPEVLLGALPGAGGTQRLPKMVGVPAALDMMLTGRSIRADRAKKMGLVDQLVEPLGPGLKPPEERTIE<br>PreMtMLCL AT 1                                                                                                                                                     |
| NP_000173 239 YLEEVAITFAKGLADKKISPKRDKGLVEKLTAYAMTIPFVRQQVYKKVEEKVRKQTKGLYPAPLKIIDVVKTGIEQGSD<br>Pr=MtMLCL AT 49 YLEEVAITFAKGLADKKISPKRDKGLVEKLTAYAMTIPFVRQQVYKKVEEKVRKQTKGLYPAPLKIIDVVKTGIEQGSD<br>MLCL AT 13 YLEEVAITFAKGLADKKISPKRDKGLVEKLTAYAMTIPFVRQQVYKKVEEKVRKQTKGLYPAPLKIIDVVKTGIEQGSD      |
| NP_000173 318 AGYLCESQKFGELVMTKESKALMGLYHGQVLCKKNKFGAPQKDVKHLAILGAGLMGAGIAQVSVDKGLKTILKDATLT<br>PreMTMLCL AT 128 AGYLCESQKFGELVMTKESKALMGLYHGQVLCKKNKFGAPQKDVKHLAILGAGLMGAGIAQVSVDKGLKTILKDATLT<br>MLCL AT 92 AGYLCESQKFGELVMTKESKALMGLYHGQVLCKKNKFGAPQKDVKHLAILGAGIMGAGIAQVSVDKGLKTILKDATLT        |
| NP_000173 396 ALDRGQQQVFKGLNDKVKKKALTSFERDSIFSNLTGQLDYQGFEKADMVIEAVFEDLSLKHRVLKEVEAVIPDHCIFASN<br>Pr=MtMLCL AT 206 ALDRGQQQVFKGLNDKVKKKALTSFERDSIFSNLTGQLDYQGFEKADMVIEAVFEDLSLKHRVLKEVEAVIPDHCIFASN<br>MLCL AT 170 ALDRGQQQVFKGLNDKVKKKALTSFERDSIFSNLTGQLDYQGFEKADMVIEAVFEDLSLKHRVLKEVEAVIPDHCIFASN |
| NP_000173 476 TSALPISEIAAVSKRPEKVIGMHYFSPVDKMQLLEIITTEKTSKDTSASAVAVGLKQGKVIIVVKDGPGFYTTRCLAPMM<br>P-=MtMLCLAT 286 TSALPISEIAAVSKRPEKVIGMHYFSPVDKMQLLEIITTEKTSKDTSASAVAVGLKQGKVIIVVKDGPGFYTTRCLAPMM<br>MLCL AT 250 TSALPISEIAAVSKRPEKVIGMHYFSPVDKMQLLEIITTEKTSKDTSASAVAVGLKQGKVIIVVKDGPGFYTTRCLAPMM  |
| NP_000173 556 SEVIRILQEGVDPKKLDS-LTTSFGFPVGAATLVDEVGVDVAKHVAEDLGKVFGERFGGGNPELLTQMVSKGFLGRKSGK<br>PreMtMLCL AT 366 SEVIRILQEGVDPKKLDS-LTTSFGFPVGAATLVDEVGVDVAKHVAEDLGKVFGERFGGGNPELLTQMVSKGFLGRKSGK<br>MLCL AT 330 SEVIRILQEGVDPKKLDS-LTTSFGFPVGAATLVDEVGVDVAKHVAEDLGKVFGERFGGGNPELLTQMVSKGFLGRKSGK |
| NP_000173 635 GFYIYQEGVKRKDLNSDMDSILASLKLPPKSEVSSDEDIQFRLVTRFVNEAVMCLQEGILATPAEGDIGAVFGLGPP<br>Pr=MtMLCL AT 445 GFYIYQEGVKRKDLNSDMDSILASLKLPPKSEVSSDEDIQFRLVTRFVNEAVMCLQEGILATPAEGDIGAVFGLGPP<br>MLCL AT 409 GFYIYQEGVKRKDLNSDMDSILASLKLPPKSEVSSDEDIQFRLVTRFVNEAVMCLQEGILATPAEGDIGAVFGLGFP          |
| NP_000173 712 PCLGGPFRFVDLYGAQKIVDRLKKYEAAYGKQFTPCQLLADHANSPNKKFYQ 763<br>PreMtMLCL AT 522 PCLGGFPRFVDLYGAQKIVDRLKKYEAAYGKQFTPCQLLADHANSPNKKFYQ 573<br>MLCL AT 486 PCLGGPFRFVDLYGAQKIVDRLKKYEAAYGKQFTPCQLLADHANSPNKKFYQ 537                                                                         |

# Human MLCL AT-1 is a shortened version (59 kDa) of the α subunit of Human Trifunctional Protein (74 kDa)

# **Trifunctional protein**

- multifunctional, membrane-bound beta-oxidation enzyme protein catalyzing three enzyme activities:

- long-chain enoyl-Coenzyme A hydratase
- long-chain 3-hydroxyacyl-Coenzyme A-dehydrogenase
- long-chain 3-oxoacyl-Coenzyme A thiolase
- heterocomplex of two subunits, 4 alpha and 4 beta

| NP_000173<br>PreMtMLCL<br>MLCL AT | AT               | TRANSIT PEPTIDE REGION - <br>MVACRAIGILSRFSAFRILRSRGYICRNFTGSSALLTRTHINYGVKGDVAVVRINSPNSKVNTLSKELHSEFSEVMNEIW       |
|-----------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------|
| NP_000173<br>PreMtMLCL<br>MLCL AT | 81<br>AT         | ASDQIRSAVLISSKPGCFIAGADINMLAACKTLQE-VTQLSQEAQRIVEKLEKSTKPIVAAINGSCLGGGLEVAISCQY                                     |
| NP_000173<br>PreMtMLCL<br>MLCL AT | 159<br>AT 1<br>1 | - TRANSIT PEPTIDE REGION - <br>RIATKDRKTVLGTPEVLLGALPGAGGTQRLPKMVGVPAALDMMLTGRSIRADRAKKMGLVDQLVEPLGPGLKPPEERTIE<br> |

Human recombinent α subunit of Trifunctional Protein exhibits MLCL AT *in vitro* activity and stimulates [1-<sup>14</sup>C]fatty acid incorporation into cardiolipin in Hela cells



# MLCL AT-1 is likely a splice variant of the $\alpha$ subunit of **Trifunctional Protein**











# Expression of MLCL AT-1 or $\alpha$ subunit of Trifunctional Protein in Normal or BTHS Lymphoblasts increases L<sub>4</sub>-cardiolipin



## MLCL AT enzyme activity is not increased by knock down of TAZ in normal human lymphoblasts but MLCL AT-1 expression restores [1-<sup>14</sup>C]linoleate into cardiolipin after TAZ knock down



Summary II:

 $\alpha$ TFP exhibits MLCL AT activity and expression of  $\alpha$ TFP stimulates cardiolipin remodeling with linoleate and increases L<sub>4</sub>-cardiolipin levels in normal and BTHS lymphoblasts linking an enzyme of  $\beta$ -oxidation to cardiolipin remodeling

Taylor et al. Biochem. J. 2012 (submitted)

MLCL AT-1 activity is not increased by *TAZ* knock down indicating that *TAZ* and MLCL AT-1 may not complement each other in cardiolipin remodeling but MLCL AT-1 expression may compensate for loss of *TAZ* 

**Current Studies:** 

1. Will expression of MLCL AT-1 or  $\alpha$ TFP in Taz knock down mice attenuate development of the cardiac defects?

2. Role of SLP-2 in mitochondrial dysfunction in BTHS

Acknowledgements

Hatch lab:

## William Taylor, Fred Xu, Edgard Mejia, Laura Cole

Darah Christie, Quim Madrenas – Robarts Research Institute, McGill University Genevieve Sparagna, Robert Murphy – University of Colorado at Boulder Zaza Khuchua – Childrens' Hospital Medical Center, Cincinnati

## Funding:







