Heart Disease in Barth Syndrome: Diagnosis and Management

John Lynn Jefferies, MD, MPH, FAAP, FACC

Director, Cardiomyopathy and Advanced Heart Failure

Co-Director, Cardiovascular Genetics Associate Director, Heart Institute Research Core Associate Professor, Pediatric Cardiology and Adult Cardiovascular Diseases The Heart Institute Cincinnati Children's Hospital

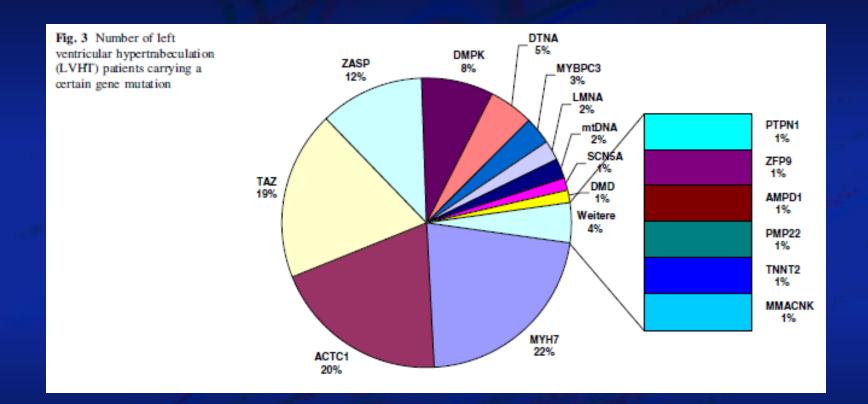
- Brief preliminary communication in 1981 by Barth et al. described new X-linked syndrome¹
 - Heart muscle
 - Skeletal muscle
 - Neutrophil leukocytes
- Further reported in 1983 with report of a large pedigree²
 - The untreated patients, all boys, died in infancy or early childhood from speticemia or cardiac decompensation

¹Barth et al.In: *Mitochondrial and Muscular Disorders*.1981:161-164.

- Clinical cardiac features in BS may include:
- Left ventricular (LV) myopathic changes with varying degrees of dysfunction:
 - Hypertrophy
 - Dilation
 - Noncompaction
- Arrhythmia
- Sudden cardiac death (SCD)

- Multicenter review of pediatric patients with confirmed Barth Syndrome
- 34 subjects identified (Age:1.2-22.6 yrs)
- All underwent comprehensive cardiac examination including:
 - Echocardiography
 - Electrocardiography (including SAECG)
 - Microvolt T wave alternans testing
 - Biochemical and hematologic laboratories
 - Physical therapy evaluation

- Family history positive for suspected or confirmed BS in 63%
- 90% had evidence cardiomyopathy
- 53% had increased trabeculations or left ventricular noncompaction (LVNC)
- Substantial number of documented ventricular arrhythmias


Cardiomyopathies

- Dilated Cardiomyopathy (DCM)
- Hypertrophic Cardiomyopathy (HCM)
- Restrictive Cardiomyopathy (RCM)
- Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC)
- Left Ventricular Noncompaction (LVNC)

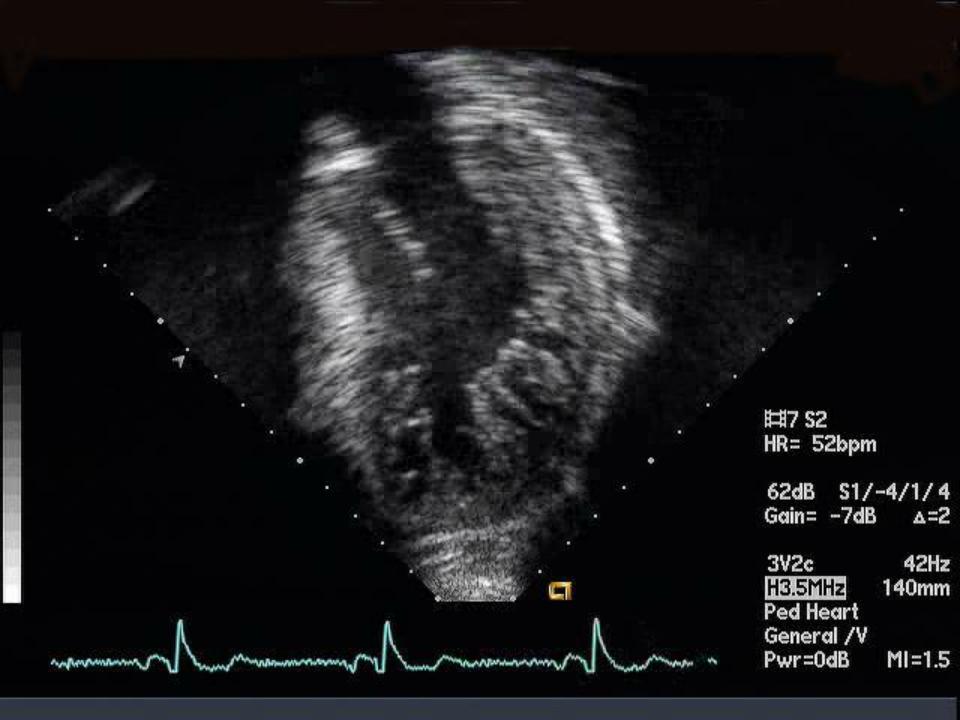
- Left ventricular noncompaction (LVNC) was first described in 1984¹
- Since that time, only limited reports have been published
- These are small, single center series in both adults and children

- LVNC has been classified as a primary cardiomyopathy with a genetic origin
- Morpholigically characterized by a severely thickened, 2-layered myocardium, numerous prominent trabeculations, and deep intertrabecular recesses
- Clinically and genetically a very heterogeneous disorder
- Symptomatic versus asymptomatic at presentation may be predictive of outcome

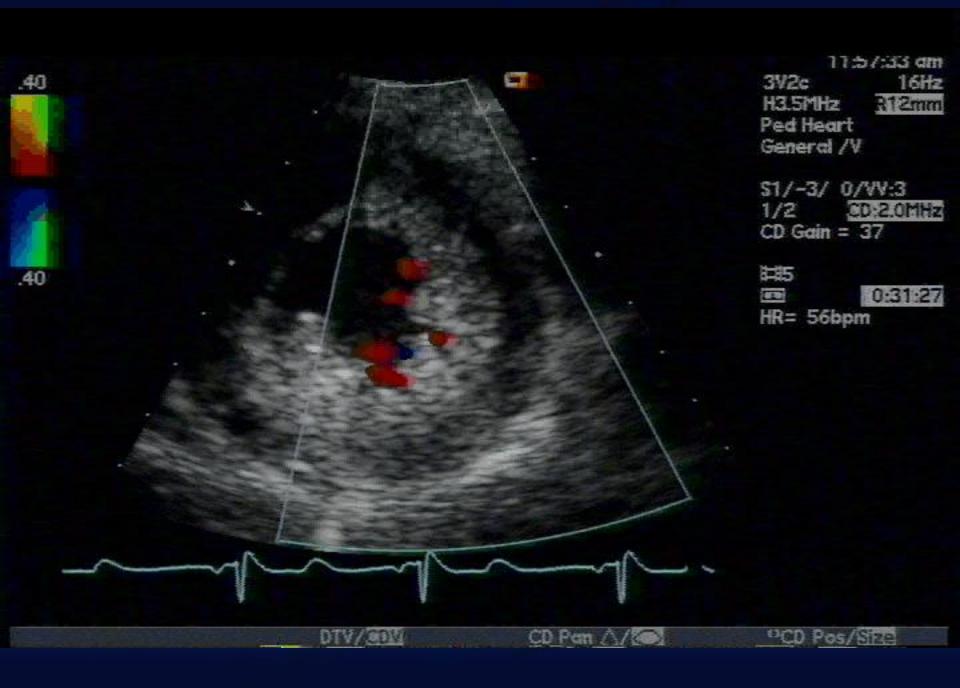
Maron et al. *Circulation*. 2006;113:1807-1816. Oechslin et al. *J Am Coll Cardiol*. 2000;36:493-500.

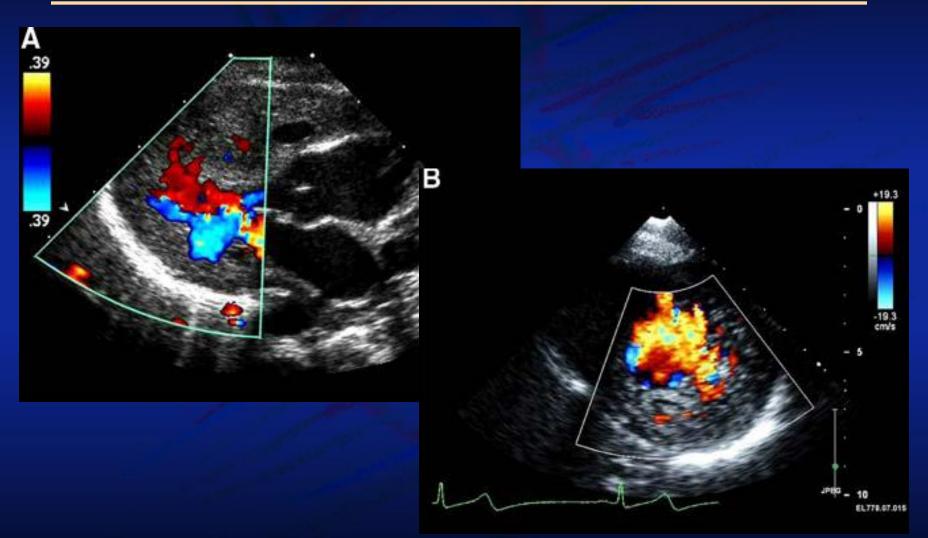
- LVNC has a heterogeneous clinical presentation and course
 - Normal size and function
 - Dilated +/- dysfunction
 - Hypertrophic
 - Mixed
- ECG abnormalities, arrhythmias, and sudden death are frequently described in association with LVNC, but the phenotype has not been well defined

- During cardiac development, myocardium initially trabeculated
 - Period before coronary development
- Adaptation to provide coronary blood flow to the developing myocardium
- Development of the coronary vasculature associated temporally with the loss of LV trabeculations
- Between gestational weeks 5-8, trabeculae regress and myocardium "compacts"

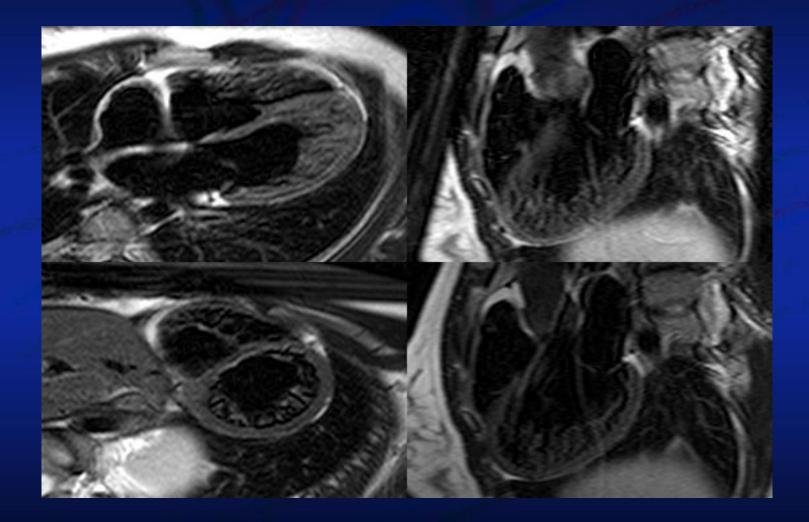

Table 1 Genetic disorders attributable to a distinct mutation associated with left ventricular hypertrabeculation (LVHT)					
Disorder	Gene	Protein	NOP	References	
Mitochondrial disorders	mtDNA, nDNA genes	Respiratory chain subunits, tRNAs	40	[23, 35, 37–39, 45, 50, 58, 107, 117]	
Barth syndrome	G4.5, TAZ	Taffazin	30	[12, 20, 73, 107, 126, 148–150]	
Hypertrophic/dilated CMP	MHY7	Beta-myosin heavy-chain 7	1, 8, 9, 12	[18, 57, 69, 77]	
Hypertrophic cardiomyopathy	ACTC	Cardiac alpha-actin	27	[56, 77, 93]	
Zaspopathy	CypherZASP/LDB3	LIM domain-binding protein	15	[107, 140, 148]	
Zaspopathy/Barth syndrome	TAZ/ZASP	Compound heterozygote	1	[87]	
Myotonic dystrophy type 1	DMPK	Protein-kinase	11	[43, 48, 113]	
Dystrobrevinopathy	DTNA	α-Dystrobrevin	6, 1	[62, 148]	
Hypertrophic/dilated CMP	MYBPC3	Myosin-binding protein C	4	[57, 71, 145]	
Dystrophinopathy	DMD	Dystrophin	3	[36, 44, 83, 131]	
Emery-Dreifuss muscular dystrophy	LMNA	Laminin	2 + 1 carrier	[56, 109]	
Sick-sinus, long-QT syndrome	SCN5A	Sodium channel type V-alpha	2 families	[84]	
Melnick Fraser syndrome	FLNA	Filamin A	2	[32, 147]	
Noonan syndrome	PTPN11, SHP2	Tyrosine phosphory lase	2	[4, 96]	
MLS (MIDAS syndrome)	HCCS	Mt holocytochrome c-type synthase	2	[55, 75]	
Myotonic dystrophy type 2	ZNF9	Zink-finger protein 9	1	[142]	
MADA deficiency	GAA	MADA	1	[41]	
CMT1A	PMP22	PMP22	1	[22]	
Hypertrophic/dilative CMP	TNNT2	Cardiac troponin T	1	[77]	
Beals-Hecht syndrome	FBN2	Fibrillin 2	1	[88]	
Leopard syndrome	PTPN11	Tyrosine phosphatase SHP2	1	[82]	
Cobalamin C-deficiency	MMACHC	Methylmalonic aciduria cblC type	1	[135]	
Nail patella syndrome	LMX1B	Transcription factor	1	[40]	
Congenital adrenal hypolplasia	NR0B1 (DAX-1)q	Dosages ensitive sex-reversal adrenal hypoplasia congenital critical region on the X-chromosome, gene 1	1	[107]	

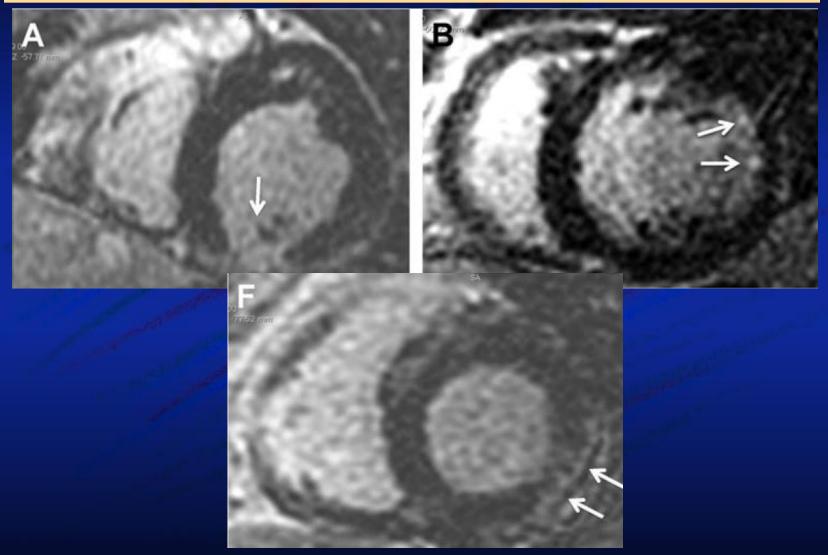
Finsterer J. Pediatr Cardiol. 2009; Jan 29 online.


- Isolated LVNC defined as occurring in the absence of other structural cardiac malformations
- Nonsyndromic LVNC refers to the absence of other extracardiac developmental discorders


- Echocardiography mainstay for diagnosis
- Jenni et al proposed diagnostic criteria
 - Lack of coexisting cardiovascular abnormalities
 - Segmental LV wall thickening with a thin compacted epicardial layer and a thicker noncompacted endocardial layer
 - End-diastolic noncompacted-to-compacted myocardial ratio of >2.0 (>1.3-1.5 in infants)
 - Presence of color Doppler flow within the recesses

- Location of noncompacted segments also important
 - Usually located in the apical, mid-lateral, and midinferior LV segments
- Noncompacted segments often hypercontractile
- Other echocardiographic findigns may include decreased LV EF, diastolic dysfunction, abnormal LV papillary muscle architecture, and LV thrombi



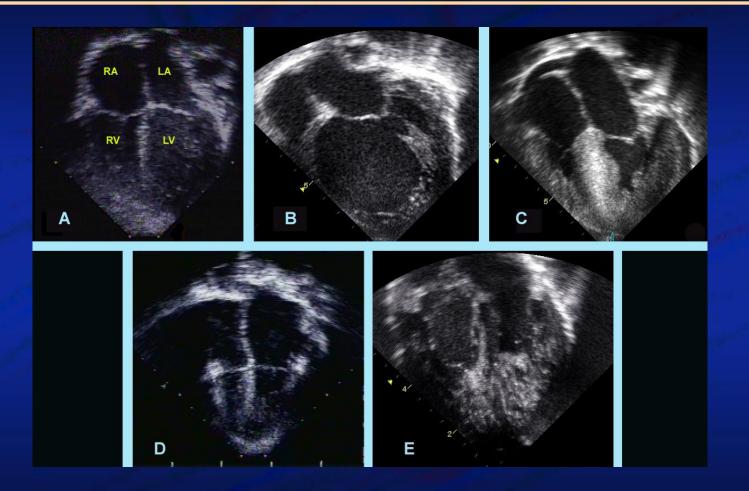


Eidem BW. 2009. Pediatr Cardiol. Online first

Myocardial Fibrosis in Left Ventricular Noncompaction

Nucifora et al. Eur J Heart Fail 2011;13:170-6.

Scar in the Heart Muscle

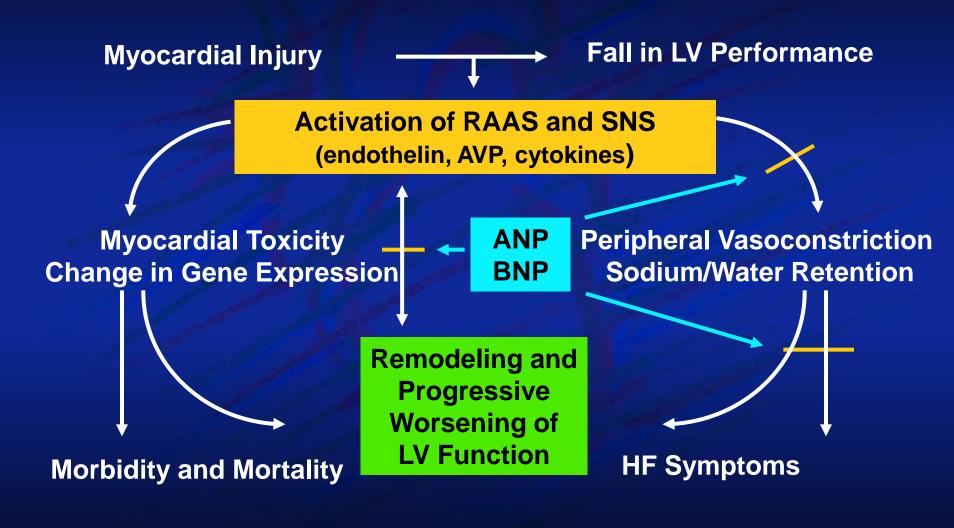

 Table 2 Univariate and multivariate regression analyses to determine the independent correlates of left ventricular

 ejection fraction in isolated left ventricular non-compaction

	Univariate	9	Multivaria	te		
			Model 1		Model 2	
	β	P-value	β	P-value	β	P-value
Age	-0.32	0.038	-0.17	0.13	-0.14	0.036
Male	-0.13	0.43				_
LV mass index	-0.40	0.009	-0.098	0.41	-0. 1 8	0.12
Number of LV non-compacted segments	-0.012	0.94				_
Maximal non-compacted/compacted myocardium ratio	-0.29	0.059	-0.10	0.36	-0.001	0.99
Presence of LV LGE	-0.73	< 0.001	-0.63	< 0.001		_
%LV LGE	-0.68	< 0.001		—	-0.62	< 0.001

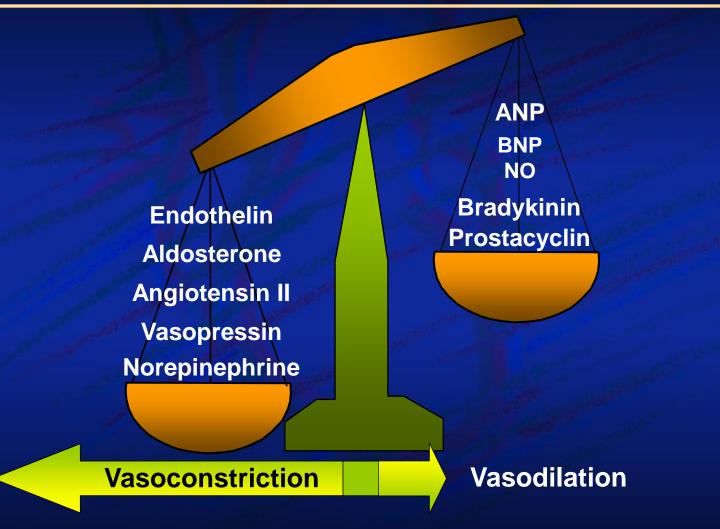
For multivariate analysis, two different models were computed, including either presence of LV LGE (Model 1) or %LV LGE (Model 2). Abbreviations as in Table 2.

Associated Phenotypes with Left Ventricular Noncompaction


- Clinical manifestations
 - Heart failure
 - Embolic events
 - Arrhythmias
 - Sudden cardiac death

Heart Failure Defined

"Heart failure is a complex clinical syndrome that can result from any structural or functional cardiac disorder that impairs the ability of the ventricle to fill with or eject blood."


Hunt SA et al. Circulation. 2001;104:2996

The Heart Failure Syndrome

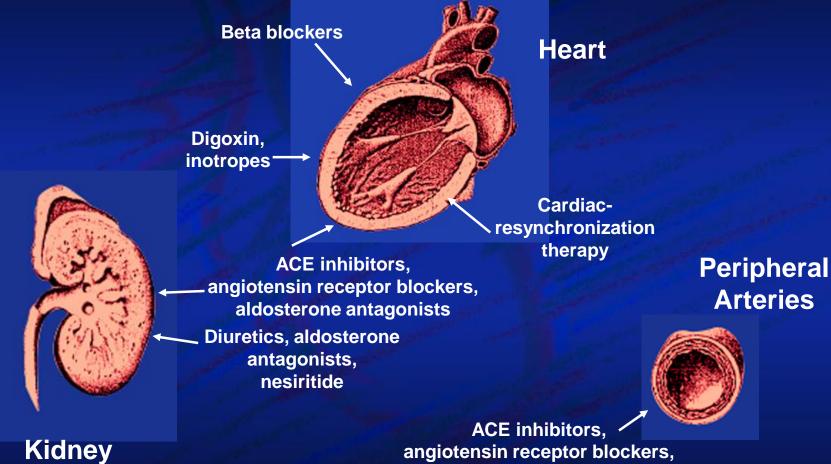
Shah M et al. *Rev Cardiovasc Med.* 2001;2(suppl 2):S2

Pharmacologies in Heart Failure Management

Shah M et al. *Rev Cardiovasc Med.* 2001;2(suppl 2):S2

Hemodynamic Profile Assessment

Congestion at Rest

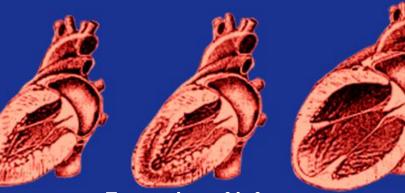

	No	Yes	Signs/symptoms	
Low Perfusion	Warm & Dry	Warm & Wet	of congestion Orthopnea/PND JVD 	
at Rest	XII .	Carl Martin	AscitesEdema	
Yes	Cold & Dry	Cold & Wet	Rales (rare in HF)	

Possible evidence of low perfusion

- Narrow pulse pressure
 Cool extremities
- Sleepy/obtunded Hypotension with ACE inhibitor
- Low serum sodium Renal dysfunction (one cause)

Stevenson LW. Eur J Heart Fail. 1999;1:251

Sites of Action for HF Therapies


angiotensin receptor blockers, vasodilators, alpha blockade, nesiritide, exercise

Jessup M, Brozena S. N Engl J Med. 2003;348:2007

Ventricular Remodeling

Ventricular Remodeling After Acute Infarction

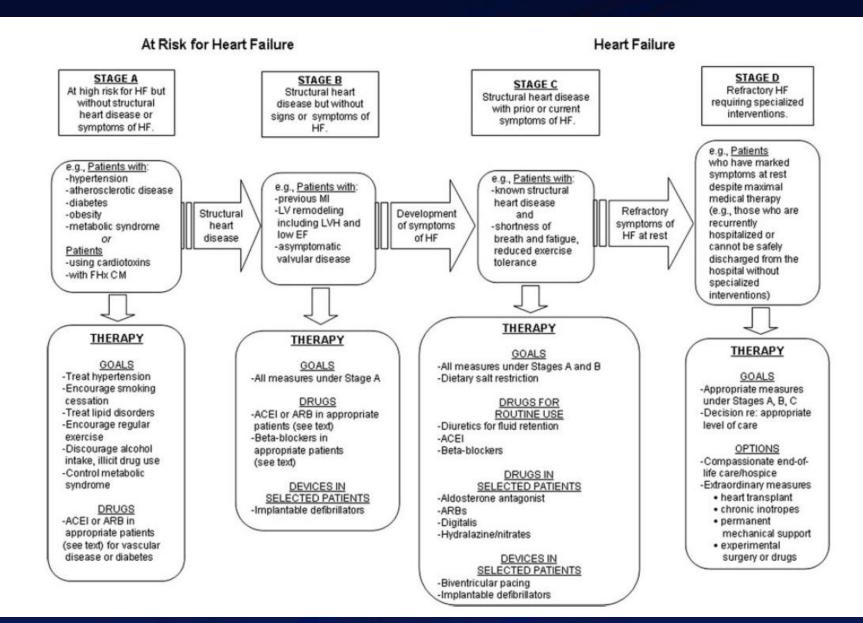
Initial infarct

Expansion of infarct (hours to days)

Global remodeling (days to months)

Ventricular Remodeling in Diastolic and Systolic HF

Dilated heart (systolic HF)


Hypertrophied heart (diastolic HF) Jessup M et al. *N Engl J Med.* 2003;348:2007

Pharmacologies in Heart Failure Management

Hemodynamic (balanced vasodilation) Veins Arteries Coronary arteries Neurohormonal \downarrow aldosterone endothelin Image: state of the state of Lusitropic Renal Antifibrotic ↑ sodium and water excretion Antiremodeling

> Abraham WT et al. J Card Fail. 1998;4:37 Clemens LE et al. J Pharmacol Exp Ther. 1998;287:67 Marcus LS et al. Circulation. 1996;94:3184 Tamura N et al. Proc Natl Acad Sci U S A. 2000;97:4239 Zellner C et al. Am J Physiol. 1999;276(3 pt 2):H1049

Cardiac

Heart Failure in Children

- Heart failure in childhood may present in the first days of life or anytime thereafter
- Signs and symptoms of heart failure in children may include:
 - Breathlessness
 - Tachypnea or tachycardia
 - Diaphoresis
 - Failure to thrive

TABLE 3	Evaluation in Cases of Docum	mented Arrhythm	nia			
Patient	Arrhythmia	EPS	ECGa	QTc, msec ^a	TWAa	SA-ECG ^a
1	Cardiac arrest (VF)	NA	NA	413 before arrest	NA	NA
2	Cardiac arrest (VF)	+VT	LVH, ST-T wave changes	450	Negative	Normal
3	VT (Holter)	+VT/VF	RBBB	NA	Positive	Abnormal
4	VT (Holter)	+VT	Low voltage, flat T waves	427	Negative	Normal
5	VT (Holter)	NA	LVH, abnormal T waves	480	Positive	Borderline
6	None demonstrated	+VT	LAD, T wave flattening	407	Negative	Borderline
7	VT (Holter)	NA	LVH with strain	353	Negative	Normal

EPS indicates electrophysiology study; VF, ventricular fibrillation; NA, not applicable; VT, ventricular tachycardia; LVH, LV hypertrophy; RBBB, right bundle branch block; LAD, left axis deviation. ^a Study results from current evaluation.

TABLE 4 Ch	Characteristics of Those With and Without Documented				
VA					
Measure	Arrhythmia Group,	No-Arrhythmia Group,	Р		
	Mean (n)	Mean (n)			
Age, y	18.1 (6)	9.2 (25)	.002		
EF, %	47 (6)	51 (24)	.20		
SF z score	-2.7 (6)	-2.6 (20)	.81		
LVIDd z score	2.3 (6)	1.7 (20)	.24		
LVEDV z score	1.8 (6)	1.9 (24)	.52		
BNP, pg/mL	399 (5)	342 (18)	.74		
QTc, msec	423 (5)	439 (25)	.52		
LVEDV indicates LV	V end-diastolic volume.				

EKG Abnormalities in LVNC

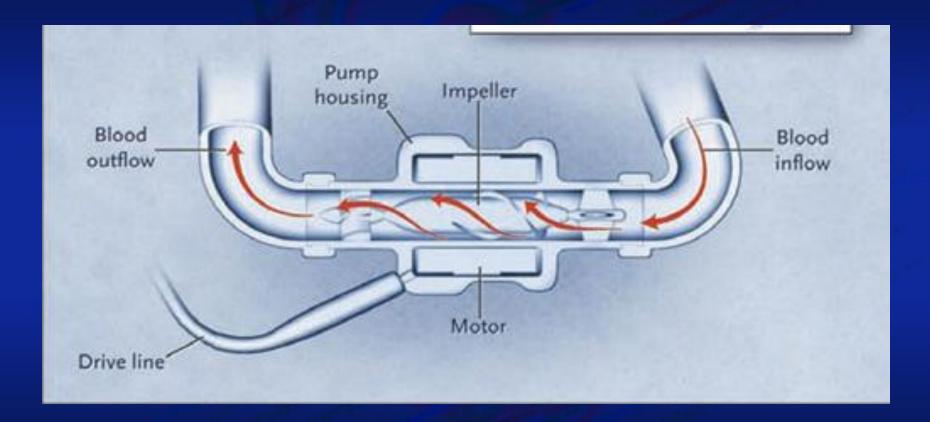
- Steffel et al. recently reviewed 78 patients with isolated LVNC
- Most common findings were intraventricular conduction delay, voltage evidence of LVH, and repolarization abnormalities
- No ECG findings or patterns specific for LVNC at the first presentation were found

Full Spectrum of Advanced Heart Failure Management

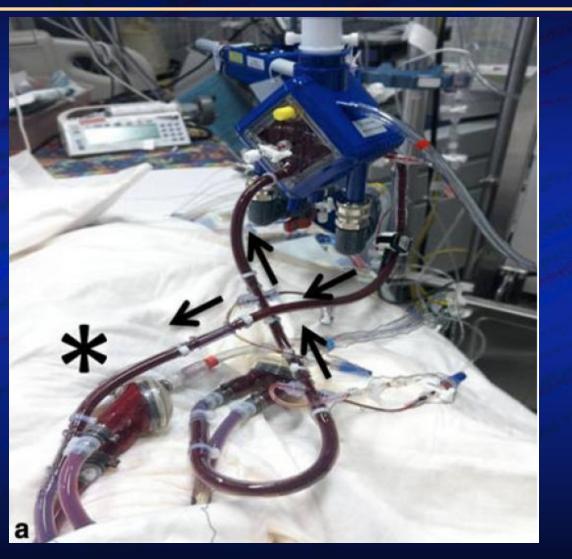
- Male infant presented at 3 days of life in cardiogenic shock
- Echocardiogram revealed LVH, severely depressed biventricular systolic function, and LVNC
- Genetic testing revealed deletion of exons 1-5 of TAZ

Left Ventricular Noncompaction in Barth Syndrome

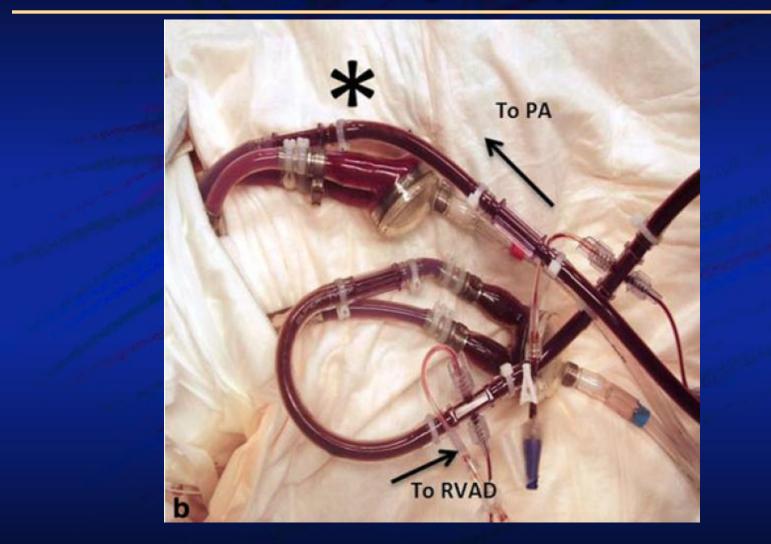
Full Spectrum of Advanced Heart Failure Management


- Clinical course was progressive
- Eventually had worsening myocardial function requiring intravenous medical support
- Ultimately required advanced therapy in the form of mechanical circulatory support
 - Sent for scheduled implantation of Berlin EXCOR LVAD

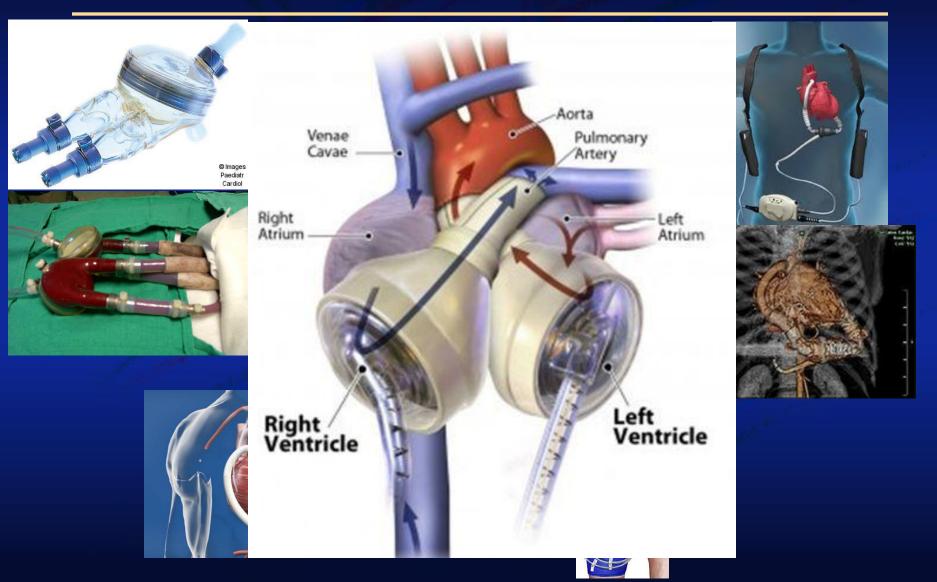
Mechanical Assist Devices Berlin Heart



Axial-Flow Pumps



Novel Approach to Mechanical Circulatory Support


Hanke et al. Pediatr Cardiol 2012; March 17:epub ahead of print.

Novel Approach to Mechanical Circulatory Support

Hanke et al. Pediatr Cardiol 2012; March 17:epub ahead of print.

Ventricular Assist Devices The Next Frontier

Cardiac Recommendations for LVNC

- Children with LVNC should be screened and have continued monitoring for ECG changes, arrhythmias, and cardiac dysfunction (ECG, Holter, echo yearly)
- Children with cardiac dysfunction or arrhythmias should be restricted from competitive athletics
- Children with LVNC and normal cardiac size and function without arrhythmias should not be formally restricted but must undergo rigorous prospective surveillance

Cardiac Recommendations for LVNC

- Newer imaging strategies can assist in diagnosis and treatment
- Management of myocardial dysfunction guided by associated findings
 - Function, thickness, valvular disease, scar
- Consideration of anticoagulation
- Heart thickness and function can change over time

Cardiac Recommendations for LVNC

- Advanced therapies such as mechanical circulatory support and cardiac transplant may be necessary and should be considered
- Each patient must be given individualized approach with careful consideration of comorbidities and most appropriate interventions